Keeping the Environment Healthy

More than six billion people live on Earth. This large human population puts a strain on the environment, but each person can make a difference. You can help safeguard the environment by paying attention to how your use of natural resources affects air, land, and water.

Air Pollution

On a still, sunny day in almost any large city, you might see a dark haze in the air, like that in Figure 11. The haze comes from pollutants that form when wood or fuels are burned. A pollutant is a substance that contaminates the environment. Air pollutants include soot, smoke, ash, and gases such as carbon dioxide, carbon monoxide, nitrogen oxides, and sulfur oxides. Wherever cars, trucks, airplanes, factories, homes, or power plants are found, air pollution is likely. Air pollution also can be caused by volcanic eruptions, wind-blown dust and sand, forest fires, and the evaporation of paints and other chemicals.

Smog is a form of air pollution created when sunlight reacts with pollutants produced by burning fuels. It can irritate the eyes and make breathing difficult for people with asthma or other lung diseases. Smog can be reduced if people take buses or trains instead of driving or if they use vehicles, such as electric cars, that produce fewer pollutants than gasoline-powered vehicles.

Figure 11
The term smog was used for the first time in the early 1900s to describe the mixture of smoke and fog that often covers large cities in the industrial world.
Figure 12

A. Compare these two photographs of the same statue. The photo on the left was taken before acid rain became a problem. The photo on the right shows acid rain damage.
B. The pH scale indicates whether a solution is acidic or basic.

Acid Precipitation

Water vapor condenses on dust particles in the air to form droplets that combine to create clouds. Eventually, the droplets become large enough to fall to the ground as precipitation—mist, rain, snow, sleet, or hail. Air pollutants from the burning of fossil fuels can react with water in the atmosphere to form strong acids. Acidity is measured by a value called pH, as shown in Figure 12. Acid precipitation has a pH below 5.6.

Effects of Acid Rain Acid precipitation washes nutrients from the soil, which can lead to the death of trees and other plants. Runoff from acid rain that flows into a lake or pond can lower the pH of the water. If algae and microscopic organisms cannot survive in the acidic water, fish and other organisms that depend on them for food also die.

Preventing Acid Rain Sulfur from burning coal and nitrogen oxides from vehicle exhaust are the pollutants primarily responsible for acid rain. Using low-sulfur fuels, such as natural gas or low-sulfur coal, can help reduce acid precipitation. However, these fuels are less plentiful and more expensive than high-sulfur coal. Smokestacks that remove sulfur dioxide before it enters the atmosphere also help. Reducing automobile use and keeping car engines properly tuned can reduce acid rain caused by nitrogen oxide pollution. The use of electric cars, or hybrid-fuel cars that can run on electricity as well as gasoline, also could help.

Mini LAB

Measuring Acid Rain

Procedure
1. Collect rainwater by placing a clean cup outdoors. Do not collect rainwater that has been in contact with any object or organism.
2. Dip a piece of pH indicator paper into the sample.
3. Compare the color of the paper to the pH chart provided. Record the pH of the rainwater.
4. Use separate pieces of pH paper to test the pH of tap water and distilled water. Record these results.

Analysis
1. Is the rainwater acidic, basic, or neutral?
2. How does the pH of the rainwater compare with the pH of tap water? With the pH of distilled water?
Greenhouse Effect

Sunlight travels through the atmosphere to Earth’s surface. Some of this sunlight normally is reflected back into space. The rest is trapped by certain atmospheric gases, as shown in Figure 13. This heat-trapping feature of the atmosphere is the greenhouse effect. Without it, temperatures on Earth probably would be too cold to support life.

Atmospheric gases that trap heat are called greenhouse gases. One of the most important greenhouse gases is carbon dioxide (CO₂). CO₂ is a normal part of the atmosphere. It is also a waste product that forms when fossil fuels are burned. Over the past century, more fossil fuels have been burned than ever before, which is increasing the percentage of CO₂ in the atmosphere. The atmosphere might be trapping more of the Sun’s heat, making Earth warmer. A rise in Earth’s average temperature, possibly caused by an increase in greenhouse gases, is known as global warming.

Global Warming Temperature data collected from 1895 through 1995 indicate that Earth’s average temperature increased about 1°C during that 100-year period. No one is certain whether this rise was caused by human activities or is a natural part of Earth’s weather cycle. What kinds of changes might be caused by global warming? Changing rainfall patterns could alter ecosystems and affect the kinds of crops that can be grown in different parts of the world. The number of storms and hurricanes might increase. The polar ice caps might begin to melt, raising sea levels and flooding coastal areas. Warmer weather might allow tropical diseases, such as malaria, to become more widespread. Many people feel that the possibility of global warming is a good reason to reduce fossil fuel use.
Ozone Depletion

About 20 km above Earth’s surface is a portion of the atmosphere known as the ozone (OH zohn) layer. Ozone is a form of oxygen, as shown in Figure 14. The ozone layer absorbs some of the Sun’s harmful ultraviolet (UV) radiation. UV radiation can damage living cells.

Every year, the ozone layer temporarily becomes thinner over each polar region during its spring season. The thinning of the ozone layer is called ozone depletion. This problem is caused by certain pollutant gases, especially chlorofluorocarbons (klor oh FLOR oh kar bunz) (CFCs). CFCs are used in the cooling systems of refrigerators, freezers, and air conditioners. When CFCs leak into the air, they slowly rise into the atmosphere until they arrive at the ozone layer. CFCs react chemically with ozone, breaking apart the ozone molecules.

UV Radiation Because of ozone depletion, the amount of UV radiation that reaches Earth’s surface could be increasing. UV radiation could be causing a rise in the number of skin cancer cases in humans. It also might be harming other organisms. The ozone layer is so important to the survival of life on Earth that world governments and industries have agreed to stop making and using CFCs.

Ozone that is high in the upper atmosphere protects life on Earth. Near Earth’s surface though, it can be harmful. Ozone is produced when fossil fuels are burned. This ozone stays in the lower atmosphere, where it pollutes the air. Ozone damages the lungs and other sensitive tissues of animals and plants. For example, it can cause the needles of a Ponderosa pine to drop, harming growth.

Reading Check What is the difference between ozone in the upper atmosphere and ozone in the lower atmosphere?
Indoor Air Pollution

Air pollution can occur indoors. Today's buildings are better insulated to conserve energy. However, better insulation reduces the flow of air into and out of a building, so air pollutants can build up indoors. For example, burning cigarettes release hazardous particles and gases into the air. Even non-smokers can suffer ill effects from secondhand cigarette smoke. As a result, smoking no longer is allowed in many public and private buildings. Paints, carpets, glues and adhesives, printers, and photocopy machines also give off dangerous gases, including formaldehyde. Like cigarette smoke, formaldehyde is a carcinogen, which means it can cause cancer.

Carbon Monoxide Carbon monoxide (CO) is a poisonous gas that is produced whenever charcoal, natural gas, kerosene, or other fuels are burned. CO poisoning can cause serious illness or death. Fuel-burning stoves and heaters must be designed to prevent CO from building up indoors. CO is colorless and odorless, so it is difficult to detect. Alarms that provide warning of a dangerous buildup of CO are being used in more and more homes.

Radon Radon is a naturally occurring, radioactive gas that is given off by some types of rock and soil, as shown in **Figure 15**. Radon has no color or odor. It can seep into basements and the lower floors of buildings. Radon exposure is the second leading cause of lung cancer in this country. A radon detector sounds an alarm when levels of the gas in indoor air become too high. If radon is present, increasing a building's ventilation can eliminate any damaging effects.

Figure 15

A The map shows the potential for radon exposure in different parts of the United States. Soils of the northern and northeastern portions of the country produce more radon gas than in most other areas. B A radon detection kit can tell the user if a dangerous level of radon is present.
Water Pollution

Pollutants enter water, too. Air pollutants can drift into water or be washed out of the sky by rain. Rain can wash land pollutants into waterways, as shown in Figure 16. Wastewater from factories and sewage-treatment plants often is released into waterways. In the United States and many other countries, laws require that wastewater be treated to remove pollutants before it is released. But, in many parts of the world, wastewater treatment is not always possible. Pollution also enters water when people dump litter or waste materials into rivers, lakes, and oceans.

Surface Water Some water pollutants poison fish and other wildlife, and can be harmful to people who swim in or drink the water. For example, chemical pesticides sprayed on farmland can wash into lakes and streams. These chemicals can harm the insects that fish, turtles, or frogs rely on for food. Shortages of food can lead to deaths among water-dwelling animals. Some pollutants, especially those containing mercury and other metals, can build up in the tissues of fish. Eating contaminated fish and shellfish can transfer these metals to people, birds, and other animals. In some areas, people are advised not to eat fish or shellfish taken from polluted waterways.

Algal blooms are another water pollution problem. Raw sewage and excess fertilizer contain large amounts of nitrogen. If they are washed into a lake or pond, they can cause the rapid growth of algae. When the algae die, they are decomposed by huge numbers of bacteria that use up much of the oxygen in the water. Fish and other organisms can die from a lack of oxygen in the water.
Ocean Water Rivers and streams eventually flow into oceans, bringing their pollutants along. Also, polluted water can enter the ocean in coastal areas where factories, sewage-treatment plants, or shipping activities are located. Oil spills are a well-known ocean pollution problem. About 4 billion kg of oil are spilled into ocean waters every year. Much of that oil comes from ships that use ocean water to wash out their fuel tanks. Oil also can come from oil tanker wrecks, as shown in Figure 17.

Groundwater Pollution can affect water that seeps underground, as shown in Figure 18. Groundwater is water that collects between particles of soil and rock. It comes from precipitation and runoff that soaks into the soil. This water can flow slowly through permeable layers of rock called aquifers. If this water comes into contact with pollutants as it moves through the soil and into an aquifer, the aquifer could become polluted. Polluted groundwater is difficult—and sometimes impossible—to clean. In some parts of the country, chemicals leaking from underground storage tanks have created groundwater pollution problems.

Figure 17
In 1996, the oil tanker Sea Empress spilled more than 72 million kg of oil into the sea along the coast of Wales. More than $40 million was spent on the cleanup effort, but thousands of ocean organisms were destroyed, including birds, fish, and shellfish.

Figure 18
Water from rainfall slowly filters through sand or soil until it is trapped in underground aquifers. Pollutants picked up by the water as it filters through the soil can contaminate water wells.
Soil Loss

Fertile topsoil is important to plant growth. New topsoil takes hundreds or thousands of years to form. The Explore Activity at the beginning of this chapter shows that rain washes away loose topsoil. Wind also blows it away. The movement of soil from one place to another is called erosion (ih ROH zhun). Eroded soil that washes into a river or stream can block sunlight and slow photosynthesis. It also can harm fish, clams, and other organisms. Erosion is a natural process, but human activities increase it. When a farmer plows a field or a forest is cut down, soil is left bare. Bare soil is more easily carried away by rain and wind. **Figure 19** shows some methods farmers use to reduce soil erosion.

Soil Pollution

Soil can become polluted when air pollutants drift to the ground or when water leaves pollutants behind as it flows through the soil. Soil also can be polluted when people toss litter on the ground or dispose of trash in landfills.

Solid Wastes What happens to the trash you throw out every week? What do people do with old refrigerators, TVs, and toys? Most of this solid waste is dumped in landfills. Most landfills are designed to seal out air and water. This helps prevent pollutants from seeping into surrounding soil, but it slows normal decay processes. Even food scraps and paper, which usually break down quickly, can last for decades in a landfill. In populated areas, landfills fill up quickly. Reducing the amount of trash people generate can reduce the need for new landfills.
Hazardous Wastes Waste materials that are harmful to human health or poisonous to living organisms are **hazardous wastes**. They include dangerous chemicals, such as pesticides, oil, and petroleum-based solvents used in industry. They also include radioactive wastes from nuclear power plants, from hospitals that use radioactive materials to treat disease, and from nuclear weapons production. Many household items also are considered hazardous like those shown in **Figure 20**. If these materials are dumped into landfills, they could seep into the soil, surface water, or groundwater over time. Hazardous wastes usually are handled separately from other types of trash. They are sealed in steel drums or treated in other ways to prevent them from polluting the environment.

Reading Check What are hazardous wastes?

Section 2 Assessment

1. List four ways in which air pollution affects the environment.
2. In what ways can an algal bloom affect pond life?
3. What methods can farmers use to prevent erosion?
4. Describe the possible causes and effects of ozone depletion.
5. **Think Critically** How could hazardous chemicals deposited in landfills eventually affect groundwater?

Skill Builder Activities

6. **Comparing and Contrasting** Compare and contrast the causes and effects of air and water pollution. For more help, refer to the Science Skill Handbook.

7. **Solving One-Step Equations** A pH of 4 is ten times more acidic than a pH of 5. A pH of 5 is ten times more acidic than a pH of 6. How many times more acidic is a solution with pH 4 than one with pH 6? For more help, refer to the Math Skill Handbook.